Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 292: 112730, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991830

RESUMEN

River hydromorphology has long been subjected to huge anthropogenic pressures with severe negative impacts on related ecosystems' functioning and water quality. Therefore, improving river hydromorphological conditions represents a priority task in sustainable river management and requires proper assessment tools. It is well known that riparian vegetation plays a crucial role in sustaining river hydromorphological conditions. However, it has been nearly neglected in most hydromorphological assessment protocols, including the European Water Framework Directive (WFD). This paper reviews and synthesizes the relevance of riparian vegetation for river hydromorphology, focusing on its contribution to streamflow and sediment regime conditions. We also examine how riparian vegetation is considered in the WFD and how it is included in national hydromorphological protocols currently in use. Our findings point to a temporal mismatch between the date when the WFD came into force and the emergence of scientific and technologic advances in riparian vegetation dynamism and bio-geomorphic modeling. To overcome this misalignment, we present promising approaches for the characterization and assessment of riparian vegetation, which include the identification of vegetation units and indicators at multiple scales to support management and restoration measures. We discuss the complexity of riparian vegetation assessment, particularly with respect to the establishment of river-type-based reference conditions and the monitoring and management targets, and propose some attributes that can serve as novel indicators of the naturalness vs. artificiality of riparian vegetation. We argue that the hydromorphological context of the WFD should be revisited and offer guidance to integrate riparian vegetation in river hydromorphological monitoring and assessment.


Asunto(s)
Ecosistema , Ríos , Monitoreo del Ambiente , Presión , Calidad del Agua
2.
Sci Total Environ ; 675: 542-559, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31030160

RESUMEN

This review provides a detailed synthesis of the effects of glacier retreat and permafrost thaw on stream ecosystems in the European Alps. As a working framework, we present a conceptual model developed from an integration of current knowledge and understanding of the habitat and ecological shifts in Alpine streams caused by deglaciation. In our work, we depict how climate change and the loss of cryosphere trigger complex cascading effects on Alpine hydrology, as the main water sources shift from snow and glaciers to rock glaciers, groundwater, and precipitation. The associated changes in habitat conditions, such as channel stability, turbidity, temperature, nutrient loadings, and concentrations of legacy pollutants and trace elements are identified. These changes are followed by complex ecological shifts in the stream communities (microbial community, primary producers, invertebrates) and food webs, with a predicted loss of biotic diversity. Corresponding increases in taxa abundances, biomass, functional diversity, and in the complexity of food webs, are predicted to occur in the upper reaches of Alpine catchments in response to ameliorating climatic and habitat conditions. Finally, current knowledge gaps are highlighted as a basis for framing future research agendas. In particular, we call for an improved understanding of permafrost influence on Alpine headwaters, including the ecology of rock-glacier fed streams, as these streams are likely to become increasingly important for water supply in many glacier-free Alpine valleys in the near future.

3.
Sci Total Environ ; 569-570: 1190-1200, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27387805

RESUMEN

Invasive species generate significant global environmental and economic costs and represent a particularly potent threat to freshwater systems. The biogeomorphic impacts of invasive aquatic and riparian species on river processes and landforms remain largely unquantified, but have the potential to generate significant sediment management issues within invaded catchments. Several species of invasive (non-native) crayfish are known to burrow into river banks and visual evidence of river bank damage is generating public concern and media attention. Despite this, there is a paucity of understanding of burrow distribution, biophysical controls and the potential significance of this problem beyond a small number of local studies at heavily impacted sites. This paper presents the first multi-catchment analysis of this phenomenon, combining existing data on biophysical river properties and invasive crayfish observations with purpose-designed field surveys across 103 river reaches to derive key trends. Crayfish burrows were observed on the majority of reaches, but burrowing tended to be patchy in spatial distribution, concentrated in a small proportion (<10%) of the length of rivers surveyed. Burrow distribution was better explained by local bank biophysical properties than by reach-scale properties, and burrowed banks were more likely to be characterised by cohesive bank material, steeper bank profiles with large areas of bare bank face, often on outer bend locations. Burrow excavation alone has delivered a considerable amount of sediment to invaded river systems in the surveyed sites (3tkm(-1) impacted bank) and this represents a minimum contribution and certainly an underestimate of the absolute yield (submerged burrows were not recorded). Furthermore, burrowing was associated with bank profiles that were either actively eroding or exposed to fluvial action and/or mass failure processes, providing the first quantitative evidence that invasive crayfish may cause or accelerate river bank instability and erosion in invaded catchments beyond the scale of individual burrows.


Asunto(s)
Astacoidea/fisiología , Ecosistema , Sedimentos Geológicos/análisis , Especies Introducidas , Animales , Inglaterra , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...